A few days ago
Suppose that a committee is needed to be formed of three students from a class of seven?
The name of each student in the class of seven is placed on a piece of paper and then three names are randomly drawn without replecing the drawn names. How many ways can the committee be determined?
Top 3 Answers
A few days ago
Favorite Answer
The answer is 7C3, “7 choose 3” = 7!/(4!3!) = (7)(6)(5)/((3)(2)(1)) = 35. This is fine if you know those math terms. An easy way to see it directly is:
The first name can be chosen in 7 ways, the second in 6 ways (since one name is already chosen), and the third in 5 ways. But for a given set of three names, they can be chosen in 3(2)(1) = 6 different orders, using the same reasoning. So the total # of possibilities is 7(6)(5)/6.
0
A few days ago
Actually, the numerator should be n(n-1)…(n-r+1), and the denominator is r!
So, it’s (7)(6)(5)(4)/(4)(3)(2)(1) = 840 / 24 = 35.
So there are 35 ways for the committee to be determined.
0
A few days ago
210
0
- Academic Writing
- Accounting
- Anthropology
- Article
- Blog
- Business
- Career
- Case Study
- Critical Thinking
- Culture
- Dissertation
- Education
- Education Questions
- Essay Tips
- Essay Writing
- Finance
- Free Essay Samples
- Free Essay Templates
- Free Essay Topics
- Health
- History
- Human Resources
- Law
- Literature
- Management
- Marketing
- Nursing
- other
- Politics
- Problem Solving
- Psychology
- Report
- Research Paper
- Review Writing
- Social Issues
- Speech Writing
- Term Paper
- Thesis Writing
- Writing Styles