A few days ago
marktalinarian

Physics/Math Question?

The launching velocity of a projectile is 20 m/s at 53 degrees above the horizontal. A. What is the vertical component of its velocity at launch? B. Its horizontal component of velocity? C. Neglecting air friction, which of these components remains constant throughout the flight path? D. Which of these components determines the projectile’s time in the air?

If you could please write the answers and explain it would be great 🙂 I find it very difficult to understand. Thank you!

Top 1 Answers
A few days ago
JavaScript_Junkie

Favorite Answer

just for reference

g=32.2ft/s²

r=unknown

Θ=0.5 * ((invsin)(r*g/v.²))

2Θ=((invsin)(r*g/v.²))

2Θ*v.²=((invsin)(r*g))

sin (2Θ*v.²)=r*g

Vy=15.96

Vx=12.036

therefore

sin (2Θ*v.²)/g=r

and

sin (2Θ*v.²)/r=g

——————–

first thing u do is look at the question

of course

u have 2 angles

1./ 53º

and

2./ 90º-53º=37º

you are given the resultant speed(hyp)

so now u have to find

the compotent speeds

there are 2

speed(Y)

and

speed(X)

so lets find both

53º above the horizon

therefore

20 * cos(53º)=speed(X) or 20 * sin(37º)=speed(X)

20 * sin(53º)=speed(Y) or 20 * cos(37º)=speed(Y)

so

20 * cos(53º)=speed(X) or 20 * sin(37º)=speed(X)

20 * 0.6018 =12.036

20 * sin(53º)=speed(Y) or 20 * sin(53º)=speed(Y)

20 * 0.798 = 15.96

now we have speed(Y) = 15.96

v= g * t

v = 32.2 * 0.4956

v = 32.2 * 0.4956

v =15.96 or speed(Y)

lets find distance to drop from the sky to ground

d(Y) = 0.5 * g * t²

d(Y) = 0.5 * 32.2 * (.4956)²

d(Y) = 7.97ft or distance(Y)

—————————

now u can calculate the Range

—————————-

d(X) = speed(X) * t

d(X) = 12.036 * .4956

d(X) = 5.965 ft

Carry on from here now

if u cant see this now

take up social science or politics LOL

1