Is this NORMAL?
Favorite Answer
Classification by type of nuclear reaction
Nuclear fission. Most reactors, and all commercial ones, are based on nuclear fission. They generally use uranium as fuel, but research on using thorium is ongoing. This article assumes that the technology is nuclear fission unless otherwise stated. Fission reactors can be divided roughly into two classes, depending on the energy of the neutrons that are used to sustain the fission chain reaction:
Thermal reactors use slow or thermal neutrons. Most power reactors are of this type. These are characterized by neutron moderator materials that slow neutrons until they approach the average kinetic energy of the surrounding particles, that is, until they are thermalized. Thermal neutrons have a far higher probability of fissioning uranium-235, and a lower probability of capture by uranium-238 than the faster neutrons that result from fission. As well as the moderator, thermal reactors have fuel (fissionable material), containments, pressure vessels, shielding, and instrumentation to monitor and control the reactor’s systems.
Fast neutron reactors use fast neutrons to sustain the fission chain reaction. They are characterized by an absence of moderating material. Initiating the chain reaction requires enriched uranium (and/or enrichment with plutonium 239), due to the lower probability of fissioning U-235, and a higher probability of capture by U-238 (as compared to a moderated, thermal neutron). In general, fast reactors will produce less waste and the waste they do produce will have a vastly shorter halflife, but they are more difficult to build and more expensive to operate. Overall, fast reactors are less common than thermal reactors in most applications. Some early power stations were fast reactors, as are some Russian naval propulsion units. Construction of prototypes is continuing (see fast breeder or generation IV reactors).
Nuclear fusion. Fusion power is an experimental technology, generally with hydrogen as fuel. While not suitable for power production, Farnsworth-Hirsch fusors are used to produce neutron radiation.
Radioactive decay. Examples include radioisotope thermoelectric generators and atomic batteries, which generate heat and power by exploiting passive radioactive decay.
- Academic Writing
- Accounting
- Anthropology
- Article
- Blog
- Business
- Career
- Case Study
- Critical Thinking
- Culture
- Dissertation
- Education
- Education Questions
- Essay Tips
- Essay Writing
- Finance
- Free Essay Samples
- Free Essay Templates
- Free Essay Topics
- Health
- History
- Human Resources
- Law
- Literature
- Management
- Marketing
- Nursing
- other
- Politics
- Problem Solving
- Psychology
- Report
- Research Paper
- Review Writing
- Social Issues
- Speech Writing
- Term Paper
- Thesis Writing
- Writing Styles